$\begin{array}{c} {\rm NAVAL~POSTGRADUATE~SCHOOL}\\ {\rm Monterey,~California} \end{array}$

EC 3550 FINAL EXAM 12/87Po

- \bullet This exam is open book and notes.
- There are four problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- Be sure to include units in your answers.
- Please circle or underline your answers.
- Show ALL work.

1	
2	
3	
4	
Total	

ame:		
	ame:	ame [,]

Data about fibers and devices are found in the attached tables.

- 1. Detector #2 is used in a link with Source #2. The total link losses are 20 dB. The detector is connected to a 50 Ω load resistor in parallel with a amplifier that has a 50 Ω input resistance and a 5 pF input capacitance. The overall gain of the amplifier is 1000 volts/amp. The thermal noise associated with the input resistance is the dominant noise source of the amplifier. Other noise mechanisms are negligible. The thermal noise temperature is T = 300K.
 - Calculate the optimum value of M for the detector.
- 2. Source #3 is connected to 5 km of Fiber #2. The loss per connector due to all misalignments is 1.5 dB. Index matching gel is *not* used in the connector. Calculate the power ($in \mu W$) at the far end of the fiber.
- 3. A 25 Mb/s link uses Source #1 with Fiber #1. The fractional change in the index of refraction of the fiber is $\Delta = 0.951\%$. The link is to use non-return-to-zero coding.
 - Calculate the maximum link distance (in km) if the link is limited by modal dispersion.
 - Calculate the maximum link distance $(in \ km)$ if the link is limited by material dispersion.
- 4. Source #2 is to be used in a 50 Mb/s link (NRZ coding) with Detector #2 operated with M=1. The total losses of the link are 28.6 dB. Assuming that the detector performance is limited by the shot noise associated with the detector dark current of 10 μ A, find the expected bit error rate of the link. Assume that the 50 Mb/s data rate requires a bandwidth of 110 MHz.

FIBER SPECIFICATIONS

	Fiber #1	Fiber #2	Fiber #3
Size	50/125	62.5/125	8/125
g	2	∞	∞
NA	0.20 (at r = 0)	0.20	0.10
α	$5.0~\mathrm{dB/km}$	$6.0~\mathrm{dB/km}$	$2.0~\mathrm{dB/km}$
@ 820 nm			
α	$1.0~\mathrm{dB/km}$	$1.20~\mathrm{dB/km}$	$0.5~\mathrm{dB/km}$
@ 1300 nm			

SOURCE SPECIFICATIONS

	Laser #1	Laser #2	LED #3
Wavelength	820 nm	1300 nm	820 nm
$\Delta \lambda$	1 nm	2 nm	50 nm
Power at	$500 \ \mu W$	$500~\mu\mathrm{W}$	$5 \mu W$
pigtail end			
Pigtail size	$200/300~\mu\mathrm{m}$	$10/125 \; \mu { m m}$	$200/300 \; \mu {\rm m}$
Pigtail NA	0.25	0.12	0.25
Pigtail type	Step index	Step index	Step index

DETECTOR SPECIFICATIONS

	Detector #1	Detector #2
Material	Silicon	Germanium
Responsivity	0.8 @ 820 nm	0.2 @ 1300 nm
A/W @ $M = 1$		
C_d	3 pF	1 pF
Excess noise	$\mathrm{M}^{0.3}$	M^1
factor		
Bulk dark	10 pA	$10~\mu\mathrm{A}$
current		
Surface dark	0	0
current		